Is
your company equipped enough to design your plastic injection mold in
an invariable environment?
It may sound hard. But SOLIDWORKS 3D CAD software allows us to design plastic injection molds with composite geometries. It provides a 3D workspace which showcases our final results before getting it for production. One can also validate the mechanical functionality of the molds and the components which in turn increases your productivity multi-fold.
SolidWorks can handle various CAD data and provides access to a range of add-on mold design and production applications. Cut down your mold design cycle, import and export various data formats and enhance your design communication with your customers, with the help of SolidWorks 3D CAD.
In continuation with our earlier blog posts, following are the injection molding rules-based checks:
It may sound hard. But SOLIDWORKS 3D CAD software allows us to design plastic injection molds with composite geometries. It provides a 3D workspace which showcases our final results before getting it for production. One can also validate the mechanical functionality of the molds and the components which in turn increases your productivity multi-fold.
SolidWorks can handle various CAD data and provides access to a range of add-on mold design and production applications. Cut down your mold design cycle, import and export various data formats and enhance your design communication with your customers, with the help of SolidWorks 3D CAD.
In continuation with our earlier blog posts, following are the injection molding rules-based checks:
- MINIMUM WALL THICKNESS: Walls which are too thin can cause filling problems and develop high molding stresses and also lead to structural failures and poor insulation characteristics. A minimum wall thickness of 2.0 mm is recommended
- MAXIMUM
WALL THICKNESS:
Avoid walls which are too thick to prevent cooling problems and
defects such as sink marks and internal voids. Thick walls can also
increase cycle time